P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche
نویسنده
چکیده
Tumor metastasis is considered the main cause of mortality in cancer patients, thus it is important to investigate the differences between highand low-metastatic cancer cells. Our previous study showed that the highly metastatic breast cancer cell line MDA-MB-231 released higher levels of ATP and exhibited higher P2Y2R activity compared with the low-metastatic breast cancer cell line MCF-7. In addition, P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche formation. Thus, in the present study, we investigated which P2Y2R-related signaling pathways are involved in the invasion of breast cancer cells. The highly metastatic breast cancer cells MDA-MB-231 and SK-BR-3 showed higher invasion than MCF-7 and T47D cells at a basal level, which was abolished through P2Y2R knockdown or in the presence of apyrase, an enzyme that hydrolyzes extracellular nucleotides. MDA-MB-231 cells also showed high levels of mesenchymal markers, such as Snail, Vimentin and N-cadherin, but not the epithelial marker E-cadherin and this expression was inhibited through ATP degradation or P2Y2R knockdown. Moreover, SK-BR-3 and MDA-MB231 cells exhibited higher ERK and PKC phosphorylation levels than T47D and MCF-7 cells and upregulated phospho-ERK and -PKC levels in MDA-MB-231 cells were significantly downregulated by apyrase or P2Y2R knockdown. Specific inhibitors of ERK, PKC and PLC markedly reduced the invasion and levels of mesenchymal marker expression in MDA-MB-231 cells. These results suggest that over-activated ERK and PKC pathways are involved in the P2Y2R-mediated invasion of breast cancer cells.
منابع مشابه
P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment
Tumor microenvironmental hypoxia induces hypoxia inducible factor-1α (HIF-1α) overexpression, leading to the release of lysyl oxidase (LOX), which crosslinks collagen at distant sites to facilitate environmental changes that allow cancer cells to easily metastasize. Our previous study showed that activation of the P2Y2 receptor (P2Y2R) by ATP released from MDA-MB-231 cells increased MDA-MB-231 ...
متن کاملHypoxia Inducible Factors Modify Collagen I Fibers in MDA-MB-231 Triple Negative Breast Cancer Xenografts12
Hypoxia inducible factors (HIFs) are transcription factors that mediate the response of cells to hypoxia. HIFs have wide-ranging effects on metabolism, the tumor microenvironment (TME) and the extracellular matrix (ECM). Here we investigated the silencing effects of two of the three known isoforms, HIF-1α and HIF-2α, on collagen 1 (Col1) fibers, which form a major component of the ECM of tumors...
متن کاملHypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells
Metastasis is the major cause of triple-negative breast cancer (TNBC)-associated mortality. Hypoxia promotes cancer cell migration and remote metastasis, which occur with hypoxia inducible factor 1α (HIF-1α) stabilization and vimentin upregulation. However, the evolutionary dynamics that link the changes in HIF-1α and vimentin levels under hypoxic conditions are not well understood. In the pres...
متن کاملSTAT3 but Not HIF-1α Is Important in Mediating Hypoxia-Induced Chemoresistance in MDA-MB-231, a Triple Negative Breast Cancer Cell Line
Hypoxia-induced chemoresistance (HICR) is a well-recognized phenomenon, and in many experimental models, hypoxia inducible factor-1α (HIF-1α) is believed to be a key player. We aimed to better understand the mechanism underlying HICR in a triple negative breast cancer cell line, MDA-MB-231, with a focus on the role of HIF-1α. In this context, the effect of hypoxia on the sensitivity of MDA-MB-2...
متن کاملInhibition of Hypoxia-Induced Cell Motility by p16 in MDA-MB-231 Breast Cancer Cells
Our previous studies indicated that p16 suppresses breast cancer angiogenesis and metastasis, and downregulates VEGF gene expression by neutralizing the transactivation of the VEGF transcriptional factor HIF-1α. Hypoxia stimulates tumor malignant progression and induces HIF-1α. Because p16 neutralizes effect of HIF-1α and attenuates tumor metastatic progression, we intended to investigate wheth...
متن کامل